Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37511110

RESUMO

Artificial intelligence (AI) is widely explored nowadays, and it gives opportunities to enhance classical approaches in QSAR studies. The aim of this study was to investigate the cytoprotective activity parameter under oxidative stress conditions for indole-based structures, with the ultimate goal of developing AI models capable of predicting cytoprotective activity and generating novel indole-based compounds. We propose a new AI system capable of suggesting new chemical structures based on some known cytoprotective activity. Cytoprotective activity prediction models, employing algorithms such as random forest, decision tree, support vector machines, K-nearest neighbors, and multiple linear regression, were built, and the best (based on quality measurements) was used to make predictions. Finally, the experimental evaluation of the computational results was undertaken in vitro. The proposed methodology resulted in the creation of a library of new indole-based compounds with assigned cytoprotective activity. The other outcome of this study was the development of a validated predictive model capable of estimating cytoprotective activity to a certain extent using molecular structure as input, supported by experimental confirmation.


Assuntos
Algoritmos , Inteligência Artificial , Estrutura Molecular , Estresse Oxidativo , Indóis/farmacologia
2.
Molecules ; 28(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37241873

RESUMO

The ability of the indole-imidazole hybrid ligands to coordinate with the Zn(II) ion and the resulting structures of this new class of coordination compounds were analyzed in order to determine their structural properties and biological functionalities. For this purpose, six novel Zn(II) complexes, [Zn(InIm)2Cl2] (1), [Zn(InMeIm)2Cl2] (2), [Zn(IniPrIm)2Cl2] (3), [Zn(InEtMeIm)2Cl2] (4), [Zn(InPhIm)2Cl2] (5) and [Zn2(InBzIm)2Cl2] (6) (where InIm is 3-((1H-imidazol-1-yl)methyl)-1H-indole), were synthesized by the reactions of ZnCl2 and the corresponding ligand in a 1:2 molar ratio in methanol solvent at an ambient temperature. The structural and spectral characterization of these complexes was performed using NMR, FT-IR and ESI-MS spectrometry and elemental analysis, and the crystal structures of 1-5 were determined using single-crystal X-ray diffraction. Complexes 1-5 form polar supramolecular aggregates by utilizing, for this purpose, the N-H(indole)∙∙∙Cl(chloride) intermolecular hydrogen bonds. The assemblies thus formed differ depending on the distinctive molecular shape, which can be either compact or extended. All complexes were screened for their hemolytic, cytoprotective, antifungal, and antibacterial activities. The results show that the cytoprotective activity of the indole/imidazole ligand significantly increases upon its complexation with ZnCl2 up to a value comparable with the standard antioxidant Trolox, while the response of its substituted analogues is diverse and less pronounced.


Assuntos
Complexos de Coordenação , Zinco , Zinco/química , Ligantes , Espectroscopia de Infravermelho com Transformada de Fourier , Imidazóis , Indóis , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
3.
Molecules ; 28(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36677766

RESUMO

In the search for new bioactive compounds, a methodology based on combining two molecules with biological properties into a new hybrid molecule was used to design and synthesize of a series of ten indole derivatives bearing imidazole, benzothiazole-2-thione, or benzoxazole-2-thione moieties at the C-3 position. The compounds were spectroscopically characterized and tested for their antioxidant, antibacterial, and fungicidal activities. The crystal structures were determined for five of them. Comparison of the closely related structures containing either benzothiazole-2-thione or benzoxazole-2-thione clearly shows that the replacement of -S- and -O- ring atoms modify molecular conformation in the crystal, changes intermolecular interactions, and has a severe impact on biological activity. The results indicate that indole-imidazole derivatives with alkyl substituent exhibit an excellent cytoprotective effect against AAPH-induced oxidative hemolysis and act as effective ferrous ion chelating agents. The indole-imidazole compound with chlorine atoms inhibited the growth of fungal strains: Coriolus versicolor (Cv), Poria placenta (Pp), Coniophora puteana (Cp), and Gloeophyllum trabeum (Gt). The indole-imidazole derivatives showed the highest antibacterial activity, for which the largest growth-inhibition zones were noted in M. luteus and P. fluorescens cultures. The obtained results may be helpful in the development of selective indole derivatives as effective antioxidants and/or antimicrobial agents.


Assuntos
Antioxidantes , Tionas , Antioxidantes/farmacologia , Tionas/química , Benzoxazóis/química , Imidazóis/farmacologia , Antibacterianos/química , Benzotiazóis/química , Antifúngicos/farmacologia , Indóis/farmacologia , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...